

FIGURE 6.13 68000 synchronous bus timing.

roughly the same time as the data strobes. Therefore, the bus interface logic must make its decision on asserting DTACK* based on the requested address when AS* is asserted. If the requested device is operational, DTACK* can be immediately asserted for a fast transaction. Unlike reads, where the microprocessor must wait for a device to return data, writes can be acknowledged before they are actually transferred to the device. In such a scheme, writes are posted within the bus interface logic finally completes the transaction without having delayed the microprocessor. If completion of the postedwrite transaction takes longer than a few cycles, it could force a subsequent access to the same device to incur wait states. Either a read or a write would be blocked until the original write was able to complete, thus freeing the device to handle the next transaction.

In addition to the basic bus interface, the 68000 supports bus arbitration to enable DMA or other logic to use the microprocessor bus for arbitrary applications. A bus request (BR*) signal is asserted by a device that wants to temporarily gain control of the bus. On the next clock cycle, when the microprocessor is not inhibited by other operations, it asserts a bus grant (BG*) signal and places its address, data, and control signals into tri-state so that they may be driven by the other device. The requesting device then asserts bus grant acknowledge (BGACK*) to signal that it is controlling the bus, and it is then free to assert its own strobes, address, and data signals.

A variety of interrupts and exceptions are supported by the 68000. Some are triggered as a result of instruction execution and some by external signals (e.g., BERR* or an interrupt request). Examples of instruction exceptions are illegal user mode register accesses or a divide-by-zero error. Most microprocessors that provide division capability contain some type of divide-by-zero error handling, because the result of such an operation is mathematically undefined and is usually the result of a fault in the program. The 68000 contains an exception vector table that is 1,024 bytes long and resides at the beginning of memory at address 0. In a multitasking system, the bus interface logic may restrict access to the vector table to supervisor mode only. In such a case, a bus error could be triggered if a user mode program, indicated by FC[2:0], tried to write the table. Each of the 256 vector entries is four bytes long and provides the starting address of the associated ISR. The one deviation from this rule is the reset vector, which actually consists of two entries at word addresses 0 and 4. Upon reset, the 68000 fetches an initial PC value from address 4 and an initial SSP value from address 0. Vectors 0 through 63 are assigned or reserved by Motorola for various hardware exceptions. Vectors 64 through 255 are assigned as user interrupt vectors. Like other microprocessors in its category, the 68000 supports bus vectoring of user interrupts where an external interrupt controller asserts an interrupt number onto the data bus during an interrupt acknowledge cycle performed by the 68000 in response to an interrupt request. This interrupt number is multiplied by four and used to index into the exception table to fetch the address of the appropriate ISR.

P • A • R • T • 2

ADVANCED DIGITAL SYSTEMS